CHAIR ON TRANSFORMATION OF TRANSPORTATION Workshop: Assessing emissions of transportation February 14, 2020 in Montreal (QC)

Séquençage des politiques de climat et des transports en Californie et au Québec / Climate and Transport Policy Sequencing in California and Quebec

Mark Purdon, PhD

Professor École des sciences de la gestion Université du Québec à Montréal Email: purdon.mark@uqam.ca

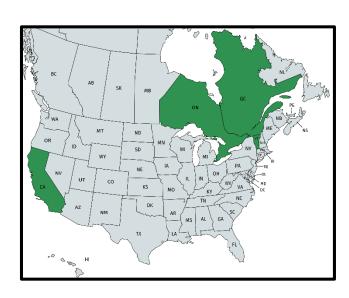
Executive Director Institut Québécois du carbone (IQCarbone) Email: mark.purdon@iqcarbone.org

Overview of the JCCTRP

Website: www.jcctrp.org

Email: secretariat@jcctrp.org

Goal


To identify technical, economic and political factors shaping the potential for environmentally effective, economically efficient, and politically viable lowcarbon transport and climate mitigation policy. The JCCTRP is addressing this goal by bringing together modeling and policy researchers in various jurisdictions into engagement with decision-makers.

Partner organizations

- Leading universities, private research institutions, businesses and non-profit organizations
- Quebec, California, Ontario and Vermont
- Includes jurisdictions of the WCI, RGGI and TCI

Funding

Recipient of a prestigious Partnership Development
 Grant from the Canadian Social Sciences and
 Humanities Research Council (SSHRC)

Quebec

California

INSTITUTE OF TRANSPORTATION STUDIES

Vermont

Ontario

Phases of JCCTRP Research

Phase 1

- July 2018 February 2019
- Objective: Characterize Existing Approaches to the Economic and Political Analysis of Low-Carbon Transport and Climate Change Mitigation Policy

Phase 2

- March 2019 March 2020
- Objective: Jointly Develop of Modeling Scenarios for Low-Carbon Transport and Climate Change Mitigation Policy and Undertake Preliminary Analysis

Phase 3

- March 2020 June 2020
- Objective: Road-map identifying technical, economic and political factors for effective, politically viable transport and climate policy and understanding their implications for emissions trading

Phase 2 Working Groups

1) Carbon Pricing and Policy Sequencing

- Modeling Policy Sequencing using TIMES: carbon pricing, ZEV Mandates, LCFS,
 Vehicle Emission Standards
- Economic Advantages of Linking State/Provincial Carbon Markets

2) Urban Transit

- California Sustainable Communities and Climate Protection Act
- Model Regional Plan Climate Targets for California in Toronto using TRANUS transport and land-use change model

3) Transport-Energy Nexus

 Modeling the impact of electric vehicle penetration on energy demand in Quebec using UVermont transport-energy model

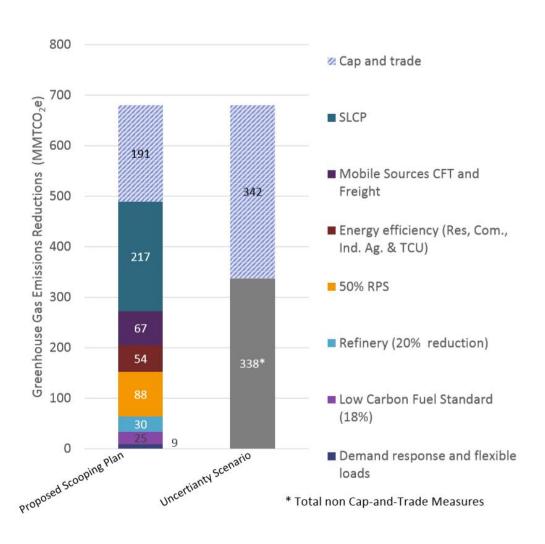
4) Low-Carbon Fuel Standard

 LCFS comparison matrix for California, Canada, BC, including modeling differences

5) Comparative Policy

 Investigating role of modeling urban transport through comparison of Los Angeles, Sacramento, Toronto and Montreal

2020 Quebec Symposium on Global Climate and Transport Policy


- Goal: Building on the Joint Clean Climate Transport Research
 Partnership (JCCTRP), the Symposium aims to bring together
 researchers and key stakeholders from Canada, the US, Europe and
 China to discuss global climate and transport policy in Montreal
- **Date:** 10-12 June 2020
- Location: Université du Québec à Montréal (UQAM_ campus in downtown Montréal
- Organization:
 - JCCTRP workshop on Day 1 which will be capped-off with a public seminar and presentation of Road Map
 - Open conference on Day 2 showcasing the work of the JCCTRP, ZEV Policy Lab and TCI
 - Day 3 will allow participants from all three research bodies to identify collaborative research needs and opportunities.

Climate and Transport Policy Sequencing

Questions about the Diffusion and Effectiveness of California's Climate Policy

- Climate policy in California is complex involving carbon pricing and "complementary policies" in various sectors of the economy
 - Complementary policies currently play a dominant role
- Questions remain about what factors affect the diffusion and eventual effectiveness of such a complex suite of climate policies
 - Difficult to replicate?
 - Do complementary policies hamper the price signal elicited through cap-and-trade?

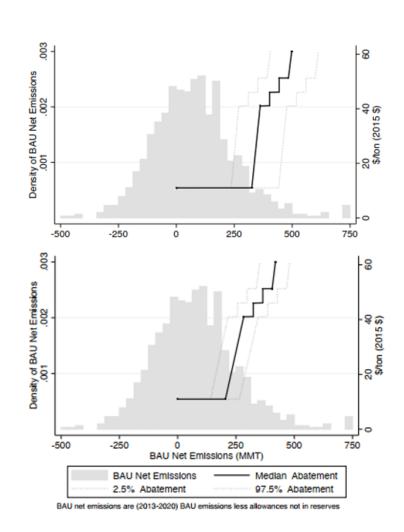
California Climate Plan "Scoping Plan Update" (2017)

Emission reductions in California via carbon market prices and complementary policies

Source of Abatement Supply	Average Modeled Reductions over 2013-2020						
	MtCO2e	MtCO2e					
Emission Reductions Response to Allowance Prices	Floor	Ceiling					
Electricity	3.4	9.7					
Transport	3.6	12.2					
Natural Gas	11.0	31.2					
Emission Reductions Resulting from Complementary Policies							
Vehicle Emission Standards & LCFS	78.3	78.3					
Renewable Portfolio Standard	63.1	63.1					
Emission Reductions Resulting from Other Non-Price Factors							
Exogenous Electricity Rate Effects	9.6	9.6					
Electricity Imports	64.0	64.0					
Offsets	97.7	97.7					
Total	330.8	365.9					

Source: (Borenstein et al., 2018: 18-19)

Politics of Climate and Transport Policy Sequencing

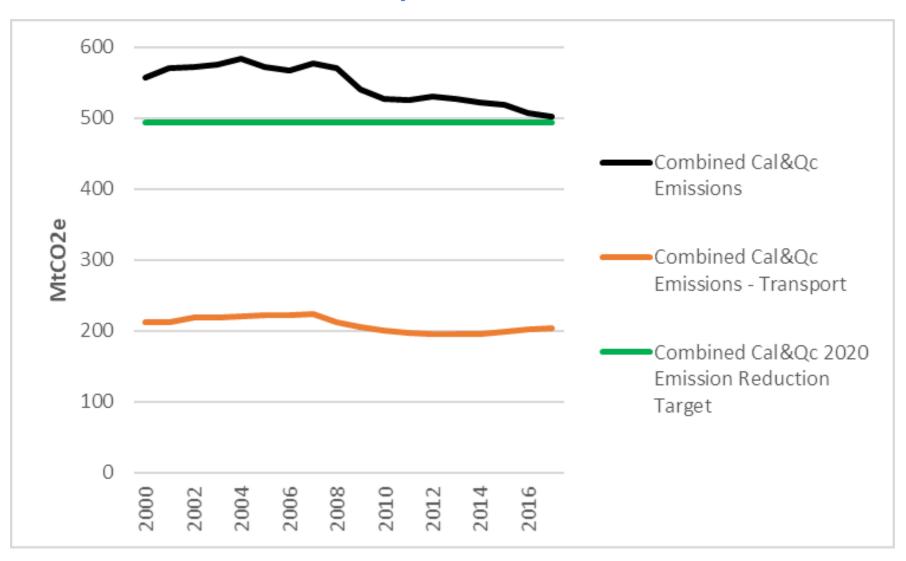

Policy sequencing

- Relationship between carbon pricing and complementary policies evolves over time, with complementary policies generally coming first and generating important political benefits that allow carbon pricing to be more broadly introduced later
- Properly accounting for policy interactions, efficiency and flexibility is difficult
- Also requires significant technical resources for governments to design policy components targeting specific sectors of the economy

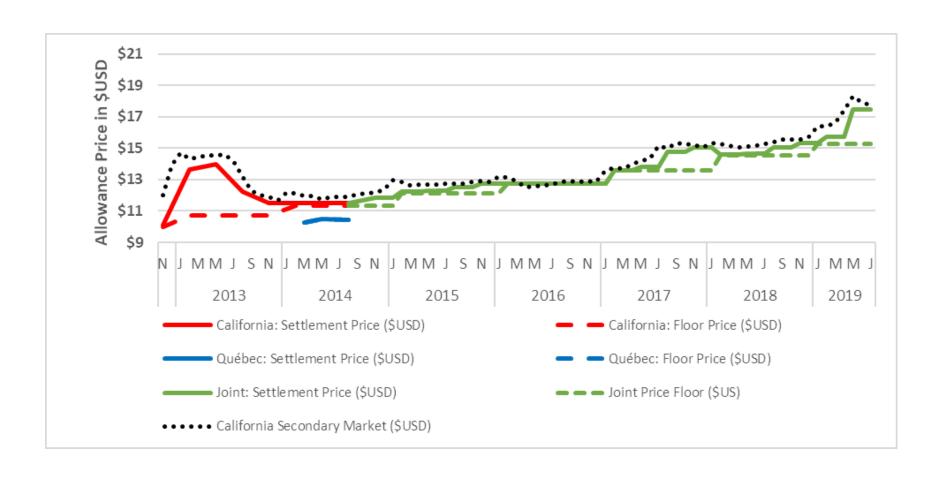
Carbon prices in California's cap-and-trade system with and without complementary policies

With Complementary Policies

Without Complementary Policies



Source: (Borenstein et al., 2018: 21, 32)


Quebec Climate and Transport: Evidence of Policy Replication and Sequencing

- Objective: provide historical and policy detail on the evolution of emissions trading and low-carbon transportation policy in California and Quebec
 - Quebec remains California's sole partner in emissions trading
- Many of the policy approaches observed in California's transport sector have been or are being adopted and adapted by the Quebec government and Canadian federal governments
 - Vehicle emissions standards, some type of low carbon fuel standards (LCFS) and zero emissions vehicle (ZEV) mandates.
- But there are important differences
 - California's regional climate targets
 - "Regional Plan Climate Targets" expressed as a percent change in per capita passenger vehicle GHG emissions relative to 2005
 - Require regional governing bodies to demonstrate compliance strategies through complex transport system modeling efforts.

Total Combined Emissions in California and Quebec, 2000-2017

Evolution in allowance price floor as well as primary and secondary market allowance prices, 2012-2019

Timeline of Emissions Trading and Low-Carbon Transport Policy in California, Quebec and Canada

YEAR	CALIFORNIA		QUEBEC		CANADIAN FEDERAL GOVT	
	Emission	Transport	Emissions	Transport	Carbon	Transport
	Trading	Policy	Trading	Policy	Pricing	Policy
1990		LEV I & ZEV 1				
1998		LEV II				
2000		AD4400				
2002		AB1493				
2007		(Pavley 1)				
2004		ZEV 2				
2006				Link to		
				Pavley 1		
2007		Waiver Denial				MVFCSA
		& LCFS 1				Proclaimed
2010						GHG Emission
						Regulations
2012	Cap-and-Trade	ACC				
2013		LCFS Legal	Cap-and-Trade			
		Challenge				
2014		LCFS Legal	Linking Cap-and-			Link to EPA
		Challenge	Trade			Standards
2015		LCFS 2				
0040		75)/ 4.9. Ozostaja		Dan Easts	Darlinton Orabon	
2016		ZEV 4 & Sustain.		Replicate	Backstop Carbon	
0047	_	Freight AP		California ZEV	Pricing	75.7
2017						ZEV
2018						Announcement Clean Fuel Stand.
2010						Announcement
2019					Backstop CP	Link to Cal.
2013					Implemented	Standards
					Implemented	Statiuatus

Implications and Future Research Questions

- What enables the replication of complex suites of climate policies?
 - Have the comparatively broad similarities in political conditions in California and Quebec created conditions for policy learning that was able to emerge to fill policy technical capacity gaps?
- Is carbon pricing alone unable to drive emission reductions in the transportation sector
 - Since both California and Quebec have pursued additional low-carbon transportation policies after linking emissions trading systems, does this mean that it remains politically difficult to raise carbon market prices to levels necessary to drive significant reductions in the transportation sector?
- Does emissions trading require symmetry in terms of complementary policies between jurisdictions in order to address free-rider concerns?
 - Does the linkage of emissions trading systems encourage the replication of complementary policies in the transportation sector in order to reduce differences between the price of carbon on the market and the actual cost of reducing emissions introduced by complementary policies themselves?

Merci! Thank you!

WEB: www.jcctrp.org

EMAIL: secretariat@jcctrp.org