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Motivation and Scope 

- Users in a transport system make choices according to their 
needs, preferences and budget which are heterogeneous in the 
population. 

- In order to encourage users to adopt sustainable transport 
services, we need to design them taking user preferences into 
account. 

- This leads to challenging optimization and forecasting problems 
and we propose models and algorithms to tackle them.



MOTIVATION AND BACKGROUND

▸ Discrete optimization (within the 
field of operations research) is 
focused on solving complex 
decision problems that are too 
hard or too time consuming for 
humans to solve 

▸ Combined with statistical learning: 
transforms forecasts into tangible 
decision support

Statistical  
Learning 

Data Centric

Decision Centric 

Operations 
Research
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THIS TALK IS ABOUT A TOPIC AT THE INTERSECTION BETWEEN 
STATISTICAL LEARNING AND OPERATIONS RESEARCH



MOTIVATION AND BACKGROUND

MANY DISCRETE OPTIMIZATION 
PROBLEMS ARE VERY HARD
▸ The travelling salesman problem: 

Given a list of cities and distances 
between each pair, find the shortest 
route that visits each city and returns 
to the original city. 

▸ Easy to understand but hard to solve 

▸ TSP with 20 cities has 19!/2 = 
60,822,550,000,000,000 solutions  

▸ Effective algorithms exist to solve 
large instances

Don’t get addicted! 
Concorde TSP solver app 

Book: In the pursuit of the travelling salesman: 
Mathematics at the limits of computation, 
William Cook, Princeton University Press, 2012.
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MOTIVATION AND BACKGROUND
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EXAMPLE: FLOW CAPTURE 
PARK-AND-RIDE FACILITY LOCATION

Statistical  
Learning 

Predict traffic flows in the 
network as a function of 

the location of facility 
locations

Determine the location of the 
facilities so as to capture as 
much flow as possible while 

respecting, e.g., budget 
constraints 

Operations 
Research



EFFECTIVE ALGORITHMS AND  
COMPUTING POWER
▸ A wide range of real word applications rely 

on operations research methodologies: 
scheduling, vehicle routing, service network 
design, fleet management, …  

▸ Impressive results over the past two decades: 
more than 265,000x algorithmic speedup! 
Dimitri Bertsimas (MIT) cites and overall 
200 billion speedup between 1991 and 
2014 for mixed integer programming solvers.

MOTIVATION AND BACKGROUND

Problems that would have 
taken 7 years to solve in 1991, 

take one second now,

George Nemhauser 
Georgia Institute of Technology 

CPLEX and Gurobi solvers, assuming 
conservative 1000x machine speedup, 
1991-2003. 6

Most progress on mixed integer linear 
programs with known and fixed parameters 
- deterministic problems. 



MOTIVATION AND BACKGROUND

STATISTICAL LEARNING + OPERATIONS RESEARCH  

SL is used to characterize uncertainty in the environment 
and then treated as known. 
Majority of models in practice, e.g., scheduling algorithms.

SL and optimization are integrated and interplay.  
Example: bilevel optimization - flow capture

SL and optimization are integrated, interplay and 
learn by interaction with the environment. 
Example: OR model learns to adapt to a changing 
environment.

Interact

Interplay

Understand
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OUTLINE

▸ The flow capture problem in brief and why it is important to consider 
heterogeneous user preferences 

▸ Bilevel optimization: challenging from both a forecasting and 
optimization perspective 

▸ A short detour: a bilevel optimization perspective on the route choice 
modeling literature 

▸ Flow capture under heterogeneous user behaviour in uncongested 
networks: high-level summary of key results 

▸ Conclusion and future work



THE FLOW CAPTURE PROBLEM IN BRIEF
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LEADER first selects on which arc to 
locate facilities in an uncongested  
network, anticipating the followers’ 
reactions 

Maximize captured flow while 
respecting budget constraint (here 
max. two resources)

Minimize travel time that depends 
on the leader’s decisions 

FOLLOWERS select the best path in 
reaction to leader decisions

O D

Travellers choose the path that minimizes travel time 
and the facilities reduce travel time, i.e., they make the 
corresponding paths more attractive. 

The solution to the bilevel optimization 
problem depends on the demand 
model that distributes the flow in the 
network.



THE FLOW CAPTURE PROBLEM IN BRIEF
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Need for accurate forecasts of traffic 
flow given any facility location solution

O D

LEADER first selects on which arc to 
locate facilities in an uncongested  
network, anticipating the followers’ 
reactions 

Maximize expected captured flow 
while respecting budget constraint 
(here max. two resources)

Maximize random utility that 
depends on the leader’s decisions 
and travel time  

FOLLOWER selects the best path in 
reaction to leader decisions

Travellers have different preferences and 
empirical findings show that distributing flow 
according to a discrete choice model leads to a 
more accurate prediction of traffic flows. 

Leader problem searches over the space of full 
space of solutions and followers adapt, the 
utilities hence depend on the upper-level 
decision variables. 



OPTIMIZATION AND FORECASTING CHALLENGES
▸ Bilevel formulations where the upper level is a discrete optimization 

problem and the follower choices are modelled by state-of-the-art choice 
models (random utility maximization models) are very challenging to solve: 
highly non-convex with combinatorial features 

▸ The forecasting problem is also challenging: the traffic flow predictions 
should be accurate even for scenarios that have never been seen in any data 

▸ Structural models and computational challenges imposes restrictions on 
which model and model specifications that can be used

11CHALLENGES
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Our contribution: we bridge the gap between the state-of-the-art traffic 
flow prediction models and flow capture models and show that we can 
solve problems with heterogenous users in realistic size networks.



A bilevel optimization 
perspective on the route 
choice modelling literature
Zimmermann and Frejinger (2020) 
A tutorial on recursive models for analyzing 
and predicting path choice behavior, EURO 
Journal on Transportation and Logistics, 9(2). 

Frejinger and Zimmermann (2020) 
Route Choice and Network Modeling 
Prepared for International Encyclopedia of 
Transportation, Elsevier. 



A BILEVEL OPTIMIZATION PERSPECTIVE ON THE ROUTE CHOICE MODELLING 
LITERATURE
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▸ Route choice models are used to analyze and predict path choice 
behaviour 

▸ Discrete choice models 

▸ Interpretation of model parameters 

▸ Prediction of traffic flow, often under new network scenarios for 
which there are no observations of path choices available

INTRODUCTION

In the case of bilevel optimization: parameter interpretation, 
functional form of the deterministic utilities, the type of discrete 
choice model as well as the prediction accuracy for new network 
scenarios are important.
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▸ Simplest model: deterministic shortest path with one common generalized cost 
function 

▸ Unrealistic: travellers have different preferences, measurement errors in 
attributes (e.g., travel time) 

▸ Stochastic (discrete choice) model: travellers are random utility maximizers 

▸ Learning - inverse problem: identify from observed path choices the utility function 
(aka generalized cost for shortest path problems) travellers seek to maximize 

▸ Deterministic utility: inverse shortest path problem 

▸ Random utility (assuming a family of distributions): learn parameters such that 
the likelihood of the sample of observed path choices is maximized (dynamic 
discrete choice models / inverse reinforcement learning)

A BILEVEL OPTIMIZATION PERSPECTIVE ON THE ROUTE CHOICE MODELLING 
LITERATURE

HIGH-LEVEL OVERVIEW
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Restricted network Unrestricted network

Path-based  
models

Recursive (arc-based)  
models

Generate a restricted number of 
paths in each choice set for each 
OD. Ignore all other alternatives. 

If the network changes, the choice 
sets need to be updated. 
Choice sets are difficult to validate 
and if they are not accurate, the 
predictions can be arbitrarily bad.

Path-based 
models

Assuming an unrestricted 
network, sample choice 
sets and correct utilities 
according to the 
sampling protocol. 

Used to obtain unbiased 
estimates but unclear 
how to use for prediction.

No need to generate choice 
sets and predictions can be 
computed per O or D. 

Expected traffic flows can be 
computed by solving a linear 
system. 

If network changes, the value 
functions need to be 
recomputed or solve shortest 
path problems in a simulation 
approach.

RANDOM UTILITY MAXIMIZATION MODELS

In practice, restricting the network can have major impact on the results! Recursive 
models have important advantages in the context of bilevel optimization as it is 
possible to leverage the fact that we can compute shortest paths to predict traffic flow.

A BILEVEL OPTIMIZATION PERSPECTIVE ON THE ROUTE CHOICE MODELLING 
LITERATURE



Flow Capture under 
Heterogeneous User Behaviour 
in Uncongested Networks
Leonard Morin, Emma Frejinger and 
Bernard Gendron



FLOW CAPTURE WITH STATE-OF-THE-ART TRAFFIC FLOW 
PREDICTION
▸ Problem: under limited budget, the leader wishes to deploy facilities of 

several types on the arcs in the network to capture the maximum amount of 
flow of all users, given that each facility intercepts a proportion of the flow 

▸ Demand: flow can be indifferent, attracted and/or evasive to the resources 

▸ Our contribution: close the gap between state-of-the-art flow capture and 
state-of-the-art route choice models 

▸ Flow is predicted using a nested recursive logit model in a simulation 
framework and can incorporate attracted / evasive / indifferent flows 

▸ We formulate a bilevel programming model, single-level reformulation 
and Benders decomposition (solved by Branch-and-Benders-Cut) that 
relies heavily on solving shortest path problems

17

HIGH-LEVEL SUMMARY OF KEY RESULTS



LEADER
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FOLLOWER

MATHEMATICAL GYMNASTICS… AND WRITING THE FOLLOWER PROBLEM USING 
SIMULATED UTILITIES INSTEAD OF PROBABILITIES LEAD TO A NICE FORMULATION

In some cases (see Section 5.4), we make the strong homogeneity assumption, which states
that all users in a given category are either strongly cooperative or strongly evasive, where
users in category l œ L are:

• strongly cooperative, if —lar < 0 for each a œ A and r œ R such that ‡ar = 1;
• strongly evasive, if —lar > 0 for each a œ A and r œ R such that ‡ar = 1.

While the expected minimum disutility (3.8) is the solution to stochastic shortest path
problems, computing a sample average approximation through simulation corresponds to
solving deterministic shortest path problems over realizations of the arc disutilities. We
explore such shortest path computations by using the simulation approach of [56], discussed
in Section 2. We call one realization of Á a scenario s œ S and denote the corresponding
realization of arc disutilities u

s

la
(y,z,Á

s). By drawing a su�ciently large number of scenarios
|S|, assigning tra�c to the resulting shortest paths x

ks

l
, s œ S, k œ K, l œ L, constitutes a

sample average approximation of the stochastic flow distribution, i.e.,

x
k

l
= 1

|S|
ÿ

sœS

x
ks

l
, k œ K, l œ L.

Note that, due to Assumption 3, the arc disutility for any scenario s œ S can be written
as:

u
s

la
(y, Â

s) =
ÿ

rœR

—lar‡aryar + Â
s

la
, (3.10)

where Â
s

la
= hla(z; –l) + Á

s

la
. For the sake of brevity, only this definition is inserted in

subsequent mathematical developments when necessary.
We can now write a deterministic arc-based model that serves as a basis for subsequent

developments:

Z = max
ÿ

aœA

ÿ

rœR

‡arqaryar

Q

a 1
|S|
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sœS
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kœK
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R
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y œ Y (3.12)

x
ks
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œ arg min

xks
l œXks

l

{u
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(y,Â

s)xks

l
}, s œ S, k œ K,l œ L, (3.13)

where X
ks

l
is the set of feasible arc flows for s œ S, k œ K and l œ L, i.e.,

X
ks

l
=

Y
]

[x
ks

l
œ {0,1}|A| |

ÿ

aœF (n)
x
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≠

ÿ

aœB(n)
x

ks

la
= e

k

n
, n œ N ;

ÿ

aœB(n)
x

ks

la
Æ 1, n œ N

Z
^

\ .

This deterministic bilevel programming formulation has several interesting properties if the
disutilities satisfy the following assumption.
Assumption 4. For each arc a œ A, user category l œ L and scenario s œ S, there exist
constants µ and � such that

µ Ø u
s

la
(y,Â

s) Ø � > 0, y œ Y. (3.14)
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The assumption u
s

la
(y,Â

s) > 0 easily holds in practice if the deterministic part of the arc
disutility gla(y; —l)+hla(z; –l) is large enough (typically, the term hla(z; –l) includes the travel
time on arc a œ A). The constants µ and � are used in our subsequent developments (see
Section 4). Under Assumption 4, the disutilities are always positive and the set of feasible
arc flows X

ks

l
, for s œ S, k œ K and l œ L, can now be written as

X
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l
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Shifting our attention back to (3.11)-(3.13), we see that for fixed y œ Y , the follower
problem decomposes by scenario, user category and OD pair, and reduces to a shortest
path problem, which can be solved by Dijkstra’s algorithm, thanks to Assumption 4. Our
Benders decomposition method, presented in Section 5, exploits this property. In addition,
due to Assumption 3, the resource location and arc flow variables are only linked through
bilinear terms, in the objectives of both the leader and the follower. We also make use of
this property in our Benders decomposition method. Finally, for fixed y œ Y , the follower
problem reduces to a linear program, since the incidence matrix of a directed graph is totally
unimodular. This implies that we can relax the integrality constraints on the flow variables
without losing optimality. This property is exploited to derive single-level reformulations that
constitute essential steps towards the development of our Benders decomposition method.
These reformulations are presented next.

4. Single-Level Reformulations
After relaxing the integrality constraints on the arc flow variables, we can write the

follower problem for fixed y œ Y and for scenario s œ S, OD pair k œ K and user category
l œ L as a linear program:

min
ÿ

aœA

u
s

la
(y,Â

s)xks

la
(4.1)

ÿ

aœF (n)
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≠
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Y
__]

__[

1, if n = O(k),
≠1, if n = D(k), n œ N,

0, otherwise,

(4.2)

x
ks

la
Ø 0, a œ A. (4.3)

Denoting as fi
ks

ln
the dual variables associated to constraints (4.2), the dual of this linear

program can be written as follows:
max fi

ks

lD(k) (4.4)

fi
ks

lm
≠ fi

ks

ln
Æ u

s

la
(y,Â

s), a = (n,m) œ A, (4.5)

fi
ks

lO(k) = 0, (4.6)

49

For fixed , the follower 
problem decomposes by 
scenario, user categories and 
OD pair. 

Deterministic shortest path 
problem that can be solved 
by Dijkstra. 

Resource location and arc 
flow variables are only linked 
through bilinear terms in the 
objectives of the leader and 
the follower.

y ∈ Y

HIGH-LEVEL SUMMARY OF KEY RESULTS



▸ We use the properties of the model to derive single-
level reformulations and a Benders decomposition 
method 

▸ We can derive different MILP reformulations that can be 
solved by state-of-the-art solvers:  

▸ Replace objective of the follower by dual feasibility 
constraints and optimality conditions (complementary 
slackness (CS) conditions or strong duality (SD) 
constraint) 

▸ Lagrangian reformulation (L) 

▸ Linearize bilinear terms by the introduction of new 
variables and constraints

SINGLE-LEVEL REFORMULATIONS

19

We can then rewrite the objective (4.19) that includes the Lagrangian term (L) as

Z(⁄) = max 1
|S|

ÿ

sœS

ÿ

aœA

ÿ

rœR

ÿ
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lœL

(qard
k
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+
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⁄
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l

A
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lD(k) ≠
ÿ

aœA

I
ÿ

rœR

—larv
ks

lar
+ Â

s

la
x

ks

la

JB

.

(4.26)

Moreover, we rewrite (4.18), the strong duality constraint (SD), as

fi
ks

lD(k) =
ÿ

aœA

I
ÿ

rœR

—larv
ks

lar
+ Â

s

la
x

ks

la

J

, s œ S, k œ K, l œ L. (4.27)

The complementary slackness conditions (4.17) are also not linear and contains, in addi-
tion to the terms ‡aryarx

ks

la
, the products x

ks

la
fi

ks

ln
. Instead of introducing additional variables

to represent these products, we exploit the fact that the x variables are, by essence, binary
variables and we rewrite the complementary slackness conditions (CS) as

u
s

la
(y,Â

s) ≠ fi
ks

lm
+ fi

ks

ln
Æ M(1 ≠ x

ks

la
), a = (n,m) œ A, s œ S, k œ K, l œ L, (4.28)

x
ks

la
œ {0,1}, a œ A, s œ S, k œ K, l œ L, (4.29)

where M is an upper bound on the length of any path in the network (due to Assumption
4, we can set M = |A|µ).

We thus obtain a MILP reformulation of our Lagrangian-based single-level non-linear
model that has the objective (4.26) subject to constraints (4.10)-(4.16), (2.6)-(4.25) and
(4.27)-(4.29). This model combines the three approaches that guarantee optimality of the
follower problem: (CS), (SD) and (L), the latter with large enough values of the Lagrange
multipliers ⁄. It is clear that only one of these approaches is su�cient to obtain a reformu-
lation. We therefore consider three MILP models, defined by which of these three elements
are included or not. We also consider two additional models that combine one of the two
sets of constraints, (CS) or (SD), with the Lagrangian term (L) using large values of ⁄, in
order to measure the impact of the latter on solving the di�erent models. The five resulting
MILP models - MCS , MCS≠L, MSD, MSD≠L and ML - are shown in Table 3.

Model CS SD L
MCS X

MCS≠L X X
MSD X

MSD≠L X X
ML X

Table 3. Definition of the di�erent MILP reformulations

These models can be solved with a state-of-the-art MILP solver. Before presenting com-
putational results that compare the performance of such a MILP solver on the di�erent

53

HIGH-LEVEL SUMMARY OF KEY RESULTS



▸ Based on  model 

▸ Designed to solve large-scale problems 

▸ Master problem: binary variables  

▸ Given , the Benders subproblem decomposes by 
scenario, OD pair and user categories 

▸ We omit all the technical details on the reformulation and the 
generation of optimality cuts 

▸ Algorithm: Branch-and-Benders-Cut (BBC) - a single branch 
and cut tree

ℳℒ

y

y ∈ Y

BENDERS DECOMPOSITION METHOD

20

HIGH-LEVEL SUMMARY OF KEY RESULTS



COMPUTATIONAL EXPERIMENTS
▸ Small network to study the impact of problem characteristics 

▸ Winnipeg network to study the computing times 

▸ Nested recursive logit (Mai et al., 2015) that allows for path utilities to 
be correlated (state of the art arc-based model)

21

(c) Generate Benders cuts (5.12) on the values of w
ks

l
.

6. Computational Experiments
There are two main objectives guiding our computational experiments. The first is to

assess the impact that various problem characteristics have when solving each of the models
presented with a state-of-the-art MILP solver. These characteristics include evasive and
cooperative user behaviors and levels of budget. The second objective is to test the scalability
of each model when problem dimensions are increased. The dimensions we focus on are the
number of scenarios, the number of OD pairs and the number of candidate arcs.

The five models presented in Section 4.2 are solved with the branch-and-cut algorithm of
CPLEX (version 12.7.1.0), using default parameters. In addition, the best feasible solution
found by the heuristic presented in Section 5.3 is initially provided when solving each model.
The Benders decomposition method is also implemented with CPLEX. We use the user cut
callback to implement the generation of Benders cuts at the root node and the lazy cut
callback to implement the generation of Benders cuts at nodes where an integer solution is
found.

Our experiments are conducted on two distinct networks. One is a small network specif-
ically designed to study the impact of the problem characteristics and the other is a large
network where the computational limits of the models can be tested. For both sets of ex-
periments, the disutility of any arc a œ A for a user category l œ L is based on the presence
of resources on the arc, the length of the arc ta and the random term Ála. It is defined as

ula(y, t, Á) =
ÿ

rœR

—lar‡aryar + –lta + Ála.

Furthermore, the discrete choice model used is a nested recursive logit model as it is a
superior alternative to the popular logit model [47]. This was done by defining the distribu-
tion scale of Ála in (3.10) as proportional to ta and by adding a constant Ÿ, which penalizes
paths that have a high number of arcs, as Ÿ is added to the disutility of each arc. We thus
use the following definition for the random term:

Áal = GEV(0,e
◊ta) + Ÿ,

where GEV stands for generalized extreme value distribution with two parameters. The
first parameter is the location, 0 in our case, and the second is the scale, which is given by
the exponential function with exponent ◊, a non-negative value, multiplied by the length of
arc a. Values are sampled from the distribution object extreme_value_distribution in the
C++ library. We note that various discrete choice models could have been used by simply
changing the definition of Ála.
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C++ library. We note that various discrete choice models could have been used by simply
changing the definition of Ála.
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RESULTS SMALL NETWORK
▸ 8 OD pairs, 32 candidate arcs 

▸ 1 user category, 30 scenarios, 2 resource types 

▸ Very Evasive (VE), mildly evasive (ME), mildly 
cooperative (MC), Very cooperative (VC) 

▸ Four levels of budget: 10%, 25%, 50%,75% of 
candidate arcs
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Fig. 5. A small network

All experiments were conducted on a machine with an Intel(R) Xeon(R) CPU E3-1275
V2 @ 3.50GHz along with 28GB of RAM.

6.1. Small Network

We begin our numerical tests on a small network comprised of 18 nodes and 60 arcs
illustrated in Figure 5. Instances based on this network have 8 OD pairs and 32 candidate
arcs. These arcs are indicated by dashed lines. There are 2 resource types and thus 64
possible resources, 1 user category and 30 scenarios. The number of scenarios has been
determined following preliminary experiments. The value |S| = 30 ensures a stable solution,
i.e., the solution does not change when increasing further the number of scenarios. The 8 OD
pairs, (1-18), (2-17), (6-16), (9-12), (18-1), (17-2), (16-6) and (12-9), have an equal aggregate
demand of 10 and promote tra�c flow interactions in the central area of the network where
resources can be installed. This is a key element in ensuring that the instances are not trivial.

Four di�erent types of user behaviors are tested on the small network: mildly evasive
(ME), very evasive (VE), mildly cooperative (MC) and very cooperative (VC). Table 4
summarizes the parameters related to the two types of resources (r = 1,2) and to the part of
the disutility of an arc that depends on user category preferences. Column “—lar” contains
the values for each type of user behavior with respect to each of the two types of resources.
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It is more difficult to prove optimality for cooperative than evasive users. 

A budget of 25% leads to the most difficult instances to solve — if the budget is 
small, there are few possibilities and if budget is large, there are no tradeoffs to 
make. 

The model that works the best depends on the user behaviour.  

On these small instances the Benders decomposition method does not make a 
significant improvement.
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RESULTS WINNIPEG NETWORK - EVASIVE USERS
▸ 1040 nodes and 2836 arcs 

▸ 2 resource types 

▸ Candidate arcs are selected in decreasing order of flows from the 
best known flow solution 

▸ OD pairs are randomly sampled 

▸ Budget fixed to 30%
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The Benders decomposition method is required to solve these larger 
problems. 



RESULTS WINNIPEG NETWORK - EVASIVE USERS
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Fig. 7. Stability (optimal value vs number of scenarios for instance 2)
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Fig. 8. Stability (optimal value vs number of scenarios for instance 3)
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where the solution times for three of the instances have been individually plotted. As can be
observed, the growth of the run times is fairly linear as a function of the number of scenarios,

When increasing the number of OD pairs, results are more contrasted, as can be seen in
Table 9. Although the majority of the instances were solved to optimality within the time
limit, we can observe that the growth in di�culty is not as smooth as with an increasing
number of scenarios. The * denotes that the instance with 80 OD pairs that could not be
solved caused a memory related error at approximately 32000 seconds (this time was not
included in the average solution time). From the average cgapf of 3.71%, it can be inferred
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Fig. 9. Solution times vs number of scenarios
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that this problematic instance was still at 18.54% when the process stopped. However,
considering the other instances were solved reasonably e�ciently, it can be seen as an outlier.

Finally, the results obtained when varying the number of candidate arcs are reported
in Table 10. Instances remain manageable up to 75 candidate arcs, but instances with 100
candidate arcs could not be solved to optimality. The ** indicate that the program ran out
of memory at approximately 25000 seconds for all five instances. However, cgapf reports a
1.90% average final gap indicating that the quality of the solutions is relatively good.

|S| 1 25 50 75 100 150
Avg time [s] 195 1627 2533 3390 4467 7311

Solved 5/5 5/5 5/5 5/5 5/5 5/5
gaph [%] 1.83 0.05 0.02 0.03 0.00 0.11
gapr [%] 23.68 8.64 8.65 7.59 6.60 5.68
cgapf [%] 0.0 0.0 0.0 0.0 0.0 0.0

Table 8. Average results (5 instances with 50 candidate arcs and 40 OD pairs): varying the
number of scenarios

7. Conclusion and Future Work
We introduced an FCP that integrates RUM models, thus allowing a stochastic path

choice representation and di�erent types of user behaviors. We developed several MILP
reformulations of the bilevel programming model for our FCP. From one of these reformu-
lations, based on Lagragian relaxation, we derived a Benders decomposition method, which
allowed us to solve large instances based on a network for the city of Winnipeg.
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The number of scenarios required varies slightly over instances. 
Computing time increases more or less linearly with the number of scenarios. 
Results show promise to solve real large-scale problems.
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Conclusion
Discrete optimization problems are important to a 
variety of applications. Often demand is assumed to 
be fixed and known, hence the solutions ignore that 
users in fact have heterogeneous preferences. 

There is a need to bridge the gap between the state-
of-the-art discrete optimization and the state-of-the-
art discrete choice models. 

We propose a bilevel formulation of a flow capture 
model along with an effective solution approach. 
They allow to compute solutions that consider the 
hetereogenous preferences of users predicted by a 
state-of-the-art path choice model.  

Computational challenges can be addressed by 
leveraging the structure and properties of the 
models. In our case, relying on shortest path 
calculations for choice predictions was crucial. 

In future work we will use this approach for various 
applications and we will develop methodology for 
dealing with congested networks.



Thank you! 

emma.frejinger@umontreal.ca


